You are here: Home Publications

Publications

Reviewed:

[120] Gottwald, M., Kenkmann, T. & Reimold, W.U. (2022): Kosmische Narben: Die Impaktstrukturen der Erde Physik in unserer Zeit 53 (1), 12-20.

[119] Karagoz, O., Kenkmann, T. & Wulf, G. (2022): Insights into the subsurface structure of wrinkle ridges on Mars. Earth and Planetary Science Letters 595, 117759. https://doi.org/10.1016/j.epsl.2022.117759.

[118] Karagoz, O., Kenkmann, T. & Wulf, G. (2022): Circum-Tharsis wrinkle ridges at Lunae Planum: Morphometry, formation, and crustal implications. Icarus 374, 114808. https://doi.org/10.1016/j.icarus.2021.114808.

[117] Kenkmann, T., Müller, L., Fraser, A., Cook, D., Sundell, K. & Rae, A.S.P. (2022): Secondary cratering on Earth: The Wyoming impact crater field. Geological Society of America Bulletin. https://doi.org/10.1130/B36196.1.

[116] Rae, A.S.P., Kenkmann, T., Padmanabha, V., Poelchau, M.H., Schäfer, F., Dörfler, M.A. & Müller, L. (2022): Dynamic compressive strength and fragmentation in sedimentary and metamorphic rocks. Tectonophysics 824, 229221. 


[115] Cox, M.A., Cavosie, A.J., Poelchau, M.H., Kenkmann, T., Bland, P.A. & Miljkovic, K. (2021): Shock deformation microstructures in xenotime from the Spider impact structure, Western Australia. In: Reimold, W.U. & Koeberl, C. (eds.): Large Meteorite Impacts and Planetary Evolution VI. Geological Society of America Special Paper 550, 449-464. https://doi.org/10.1130/2021.2550(19).

[114] Cox, M.A., Cavosie, A.J., Poelchau, M.H., Kenkmann, T., Miljković, K. & Bland, P.A. (2021): Asymmetric shock deformation at the Spiderimpact structure, Western Australia. Meteoritics and Planetary Science 56(2), 331-351. https://doi.org/10.1111/maps.13621.

[113] Ebert, M., Poelchau, M.H., Kenkmann, T., Gulick, S.P.S., Hall, B., Lofi, J., McCall, N. & Rae, A.S.P. (2021): Comparison of stress orientation indicators in Chicxulub’s peak ring: Kinked biotites, basal PDFs, and feather features. In: Reimold, W.U. & Koeberl, C. (eds.): Large Meteorite Impacts and Planetary Evolution VI. Geological Society of America Special Paper 550, 479-494. https://doi.org/10.1130/2021.2550(21).

[112] Gärtner, M.A., Ebert, M., Schimmerrohn, M., Hergarten, S., Schäfer, F., Kenkmann, T. & Gulde, M. (2021): The first microseconds of a hypervelocity impact. In Reimold, W.U. & Koeberl, C. (eds.): Large Meteorite Impacts and Planetary Evolution VI. Geological Society of America Special Paper 550, 407-418. https://doi.org/10.1130/2021.2550(16).

[111] Gottwald, M., Kenkmann, T., Reimold, W.U., Fritz, T. & Breit, H. (2021): The TanDEM-X Digital Elevation Model and Terrestrial Impact Structures. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2021.3069640.

[110] Kenkmann, T. (2021): The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more. Meteoritics & Planetary Science 56(5), 1024-1070. https://doi.org/10.1111/maps.13657. 

[109] Kenkmann, T., Haines, P.W., Sweet, I.P. & Mitchell, K. (2021):The Cleanskin impact structure, Northern Territory and Queensland, Australia: A reconnaissance study. In: Reimold, W.U. & Koeberl, C. (eds.): Large Meteorite Impacts and Planetary Evolution VI. Geological Society of America Special Paper 550, 69-80. https://doi.org/10.1130/2021.2550(03).

[108] Rae, A.S.P., Poelchau, M.H. & Kenkmann, T. (2021): Stress and strain during shock metamorphism. Icarus 370, 114687.

[107] Wulf, G. & Kenkmann, T. (2021): Rampart craters on Earth. In: Reimold, W.U. & Koeberl, C. (eds.): Large Meteorite Impacts and Planetary Evolution VI. Geological Society of America Special Paper 550, 607-627. https://doi.org/10.1130/2021.2550(28).


[106] Dörfler, M.A. & Kenkmann, T. (2020): Central uplift collapse in acoustically fluidized granular targets: Insights from analog modeling. Meteoritics and Planetary Science 55. doi: 10.1111/maps.13442.

[105] Ebert, M., Poelchau, M.H., Kenkmann, T. & Schuster, B. (2020) Tracing shock-wave propagation in the Chicxulub crater: Implications for the formation of peak rings. Geology 48. https://doi.org/10.1130/G47129.1.

[104] Gottwald, M., Kenkmann, T. & Reimold, W.U. (2020): Terrestrial Impact Structures. The TanDEM-X Atlas, Pfeil, München, 608. 

[103] Kenkmann, T., Wulf, G. & Agarwal, A. (2020): Ramgarh, Rajasthan, India: A 10 km diameter complex impact structure. Meteoritics and Planetary Science 55, 936-961. doi: 10.1111/maps.13454.

[102] Pietrek, A., Hergarten, S. & Kenkmann, T. (2020): Morphometric characterization of longitudinal striae on Martian landslides and impact ejecta blankets and implications for the formation mechanism. Journal of Geophysical Research Planets 125. doi: 10.1029/2019JE006255.

[101] Rae, A.S.P., Kenkmann, T., Padmanabha, V., Poelchau, M.H. & Schäfer, F. (2020): Dynamic Compressive Strength and Fragmentation in Felsic Crystalline Rocks. Journal of Geophysical Research Planets 125(10), https://doi.org/10.1029/2020JE006561.


[100] Agarwal, A., Kontny, A., Poelchau, M.H. & Kenkmann, T. (2019): Variation in magnetic fabrics due to experimental impact cratering. J. Geophys. Res.: Solid Earth. https://doi.org/10.1029/2018JB017128.

[99] Agarwal, A., Poelchau, M.H., Kenkmann, T., Rae, A. & Ebert, M. (2019): Impact experiment on gneiss: The effects of foliation on cratering process. J. Geophys. Res.: Solid Earth 124, 13532-13546. https://doi.org/10.1029/2019JB018345.

[98] Arp, G., Reimer, A., Simon, K., Sturm, S., Wilk, J., Kruppa, C., Hecht, L., Hansen, B. T., Pohl, J., Reimold, W. U., Kenkmann, T. & Jung, D. (2019). The Erbisberg drilling 2011: Implications for the structure and postimpact evolution of the inner ring of the Ries impact crater. Meteoritics and Planetary Science. https://doi.org/10.1111/maps.13293.

[97] El Kerni, H., Chennaoui Aoudjehane, H.,  Baratoux, D., Aoudjehane, M. Charrière, A., Ibouh, H., Rochette, P., Quesnel, Y., Uehara, M., Kenkmann, T., Wulf, G., Poelchau, M. H., Nguyen, V. B.,  Aboulahris, M.,  Makhoukhi, S., Aumaître, G.,  Bourlès, D. & Keddadouche, K. (2019): Geological and geophysical studies of the Agoudal impact structure (Central High Atlas, Morocco): New evidence for crater size and age. Meteoritics and Planetary Science. https://doi.org/10.1111/maps.13347.

[96] Hergarten, S. & Kenkmann, T. (2019): Long-term erosion rates as a function of climate derived from the impact crater inventory. Earth Surface Dynamics 7, 459-473. https://doi.org/10.5194/esurf-7-459-2019.

[95] Hergarten, S., Wulf, G. & Kenkmann, T. (2019): Comment on “Earth and Moon impact flux increased at the end of the Paleozoic”. Science. https://doi.org/10.1126/science.aaw7471.

[94] Wulf, G., Hergarten, S. & Kenkmann, T. (2019): Combined remote sensing analyses and landform evolution modeling reveal the terrestrial Bosumtwi impact structure as a Mars-like rampart crater. Earth and Planetary Science Letters 506, 209–220. https://doi.org/10.1016/j.epsl.2018.11.009.


[93] Carl, E.R., Liermann, H.P., Ehm, L., Danilewsky, A. & Kenkmann, T. (2018): Phase transitions of α‐quartz at elevated temperatures under dynamic compression using a membrane‐driven diamond anvil cell: Clues to impact cratering? Meteoritics and Planetary Science 53, 1687-1695. doi.org/10.1111/maps.13077.

[92] Kenkmann, T. & Wulf, G. (2018): Impact Cratering. In: Pio Rossi, A. & van Gasselt, S. (eds.): Planetary Geology. Springer, 123-145.

[91] Kenkmann, T., Sundell, K.A. & Cook, D. (2018): Evidence for a large Paleozoic Impact Crater Strewn Field in the Rocky Mountains. Scientific Reports 2018 8, 13246. doi: 10.1038/s41598-018-31655-4.

[90] Kenkmann, T., Deutsch, A., Thoma, K., Ebert, M., Poelchau, M.H., Buhl, E., Carl, E.R., Danilewsky, A., Dresen, G., Dufresne, A., Durr, N., Ehm, L., Grosse, C., Gulde, M., Güldemeister, N., Hamann, C., Hecht, L., Hiermaier, S., Hoerth, T., Kowitz, A., Langenhorst, F., Lexow, B., Liermann, H.P., Luthe,r R., Mansfeld, U., Moser, D., Raith, M., Reimold, W. U., Sauer, M., Schäfer, F., Schmitt, R.T., Sommer, F., Wilk, J., Winkler, R. & Wünnemann, K. (2018): Experimental impact cratering: A summary of the major results of the MEMIN research unit. Meteoritics and Planetary Science 53, 1543-1568. doi.org/10.1111/maps.13048.

[89] Krüger, T., Hergarten, S. & Kenkmann, T. (2018): Deriving morphometric parameters and the simple‐to‐complex transition diameter from a high resolution, global database of fresh lunar impact craters (D ≥ ~ 3 km). Journal of Geophysical Research, Planets. doi.org/10.1029/2018JE005545.

[88] Winkler, R., Luther, R., Poelchau M. H., Wünnemann K. & Kenkmann, T. (2018): Subsurface deformation of experimental hypervelocity impacts in quartzite and marble targets. Meteoritics and Planetary Science 53, 1733-1755. doi.org/10.1111/maps.13080.

[87] Wilk, J., Hamann, Ch., Fazio, A., Luther, R., Hecht, L., Langenhorst, F. & Kenkmann, T. (2018): Petrographic investigation of shatter cone melt films recovered from MEMIN impact experiments in sandstone and iSALE modeling of their formation boundary conditions. Meteoritics & Planetary Science 53(8), 1569-1593. http://dx.doi.org/10.1111/maps.13179.


[86] Aschauer, J. & Kenkmann, T. (2017): Impact cratering on slopes. Icarus 290, 89–95. http://www.sciencedirect.com/science/article/pii/S0019103516305322.

[85] Carl, E.-R., Mansfeld, U., Liermann, H.-P., Danilewsky, A., Langenhorst, F., Ehm, L., Trullenque, G. & Kenkmann, T. (2017): High-pressure phase transitions of α-quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III. Meteoritics and Planetary Science 52, 1465–1474.

[84] Kenkmann, T., Poelchau, M.H. & Deutsch, A. (2017): Bridging the Gap III: Impact cratering in nature, experiment, and modeling. Meteoritics and Planetary Science 52,1281-1284.

[83] Kenkmann, T., Sturm, S., Krüger, T., Salameh, E., Al-Raggad, M. & Konsul, K. (2017): The structural inventory of a small complex impact crater: Jebel Waqf as Suwwan, Jordan Meteoritics and Planetary Science 52, 1351–1370.

[82] Kenkmann, T. & Wulf, G. (2017): Impact cratering. In: PioRossi, A. & van Gasselt, S. (eds. ): Planetary Geology. Springer Praxis Books Astronomy and Planetary Sciences, Berlin, New York, 123-146.

[81] Krüger, T., Kenkmann, T. & Hergarten, S. (2017): Structural uplift and ejecta thickness of lunar mare craters: New insights into the formation of complex crater rims. Meteoritics and Planetary Science 52, 2220–2240. doi: 10.1111/ maps.12925.

[80] Xu, X., Kenkmann, T., Xiao, Z., Sturm, S., Metzger, N., Yang, Y., Weimer, D., Krietsch, H. & Zhu, M.-H. (2017): Reconnaissance survey of the Duolun ring structure in Inner Mongolia: Not an impact structure. Meteoritics and Planetary Science 52, 1822–1842. doi: 10.1111/maps.12890.

[79] Zwiessler, R., Kenkmann, T., Poelchau, M.H., Nau, S. & Hess, S. (2017): On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression. Journal of Structural Geology 97, 225–236. http://www.sciencedirect.com/science/article/pii/S0191814117300688.


[78] Kenkmann, T. (2016): Dynamics of impact cratering. In: Li, H., Li, J., Zhang, Q. & Zhao, J. (eds.): Rock dynamics: from research to engineering. Taylor & Francis Group, London, 37-48.

[77] Kenkmann, T., Hergarten, S., Kuhn, T. & Wilk, J. (2016): Formation of shatter cones by symmetric fracture bifurcation: Phenomenological modeling and validation. Meteoritics and planetary Science 51, 1519–1533 doi: 10.1111/maps.12677.

[76] Pietrek, A. & Kenkmann, T. (2016): Ries Bunte Breccia revisited: Indications for the presence of water in Itzing and Otting drill cores and implications for the emplacement process. Meteoritics & Planetary Science 51(1), 1-20. doi: 10.1111/maps.12656.

[75] Sturm, S., Kenkmann, T. & Hergarten, S. (2016): Ejecta thickness and structural rim uplift measurements of Martian impact craters: Implications for the rim formation of complex impact craters. Journal of Geophysical Research Planets 121, doi: 10.1002/2015JE004959.

[74] Winkler R., Poelchau, M.H., Moser, S. & Kenkmann, T. (2016): Subsurface deformation in hypervelocity cratering experiments into high-porosity tuffs. Meteoritics & Planetary Science 51(10): 1849-1870. doi: 10.1111/maps.12694.


[73] Deutsch, A., Poelchau, M.H. & Kenkmann, T. (2015): Impact metamorphism in terrestrial and experimental cratering events. EMU Notes in Mineralogy 15, 89–127.

[72] Hergarten, S. & Kenkmann, T. (2015): The number of impact craters on Earth: Any room for further discoveries? Earth Planet. Sci. Lett. 425, 187-192. doi: 10.1016/j.epsl.2015.06.009.

[71] Kenkmann, T., Afifi, A.M., Stewart, S. A., Poelchau, M.H., Cook, D. J. & Neville, A.S. (2015): Saqqar: A new 34 km diameter impact crater in Saudi Arabia. Meteoritics and Planetary Science 50, 1925-1940. doi: 10.1111/maps.12555.

[70] Kenkmann, T., Poelchau, M.H., Deutsch, A. & Thoma, K. (2015): Cosmic collisions in the experimental chamber. German Research. Magazine of the Deutsche Forschungsgemeinschaft 1, 30-35.

[69] Sturm, S., Kenkmann, T., Willmes, M., Pösges, G. & Hiesinger, H. (2015): The distribution of megablocks in the Ries crater, Germany: Remote sensing, field investigation and statistical analyses. Meteoritics and Planetary Science 50, 141-171. doi: 10.1111/maps.12408.

[68] Reimold, W.U., Fischer, L., Müller, J., Kenkmann, T., Schmitt, R.-T., Altenberger U. & Kowitz A. (2015): Impact-generated pseudotachylitic breccia in drill core BH-5 Hättberg, Siljan impact structure, Sweden. GFF, doi: 10.1080/11035897.2015.1015264.

[67] Wulf, G. & Kenkmann, T. (2015): High-resolution studies of double-layered ejecta craters: Morphology, inherent structure, and phenomenological modeling. Meteoritics & Planetary Science 50, 173–203. doi: 10.1111/maps.12416.


[66] Buhl, E., Poelchau, M.H., Dresen G. & Kenkmann, T. (2014): Scaling of sub-surface deformation in hypervelocity impact experiments on porous sandstone. Tectonophysics, doi: 10.1016/j.tecto.2014.07.030.

[65] Buhl, E., Sommer, F., Poelchau, M.H., Dresen, G. & Kenkmann, T. (2014): Ejecta from experimental impact craters: Particle size distribution and fragmentation energy. Icarus 237, 131-142.

[64] Ebert, M., Hecht, L., Deutsch, A., Kenkamnn, T., Wirth, R. & Berndt, J. (2014): Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments. Geochimica et Cosmochimica Acta 133, 257-279.

[63] Hoerth, T., Schäfer, F., Nau, S., Kuder, J., Poelchau, M.H., Thoma, K. & Kenkmann, T. (2014): In situ measurements of impact-induced pressure waves in sandstone targets. Journal of Geophysical Research-Planets 119, 2177-2187. doi: 10.1002/2014JE004616.

[62] Kenkmann, T., Poelchau, M.H. & Wulf, G. (2014): Review Article: Structural geology of impact craters. Journal of Structural Geology 62, 156-182.

[61] Poelchau, M.H., Kenkmann, T., Hoerth, T, Schäfer, F., Rudolf, M. & Thoma, K. (2014): Impact cratering experiments into quartzite, sandstone and tuff: The effects of projectile size and target properties on spallation. Icarus 42, 211-224.


[60] Buhl, E., Kowitz, A., Elbeshausen, D., Sommer, F., Dresen, G., Poelchau, M.H., Reimold, W.U., Schmitt, R.T. & Kenkmann, T. (2013): Particle size distribution and strain rate attenuation in hypervelocity impact and shock recovery experiments. Journal of Structural Geology. doi: 10.1016/j.jsg.2013.08.007.

[59] Buhl, E., Poelchau, M. H., Dresen, G. & Kenkmann, T. (2013): Deformation of dry and wet sandstone targets during hypervelocity impact experiments, as revealed from the MEMIN Program.- Meteoritics & Planetary Science, MEMIN special issue. doi: 10.1111/j.1945-5100.2012.01431.x.

[58] Dufresne, A., Poelchau, M. H., Kenkmann, T., Deutsch, A., Hoerth, T., Schäfer, F. & Thoma, K. (2013): Crater morphology in sandstone targets: The MEMIN impact parameter study.- Meteoritics & Planetary Science, MEMIN special issue. doi: 10.1111/maps.12024.

[57] Ebert M., Hecht L., Deutsch A. & Kenkmann T. (2013): Chemical modification of projectile residues and target melts in a MEMIN cratering experiment.- Meteoritics & Planetary Science, MEMIN special issue. doi: 10.1111/j.1945-5100.2012.1429.x

[56] Hoerth, T., Schäfer, F., Thoma, K., Kenkmann, T., Poelchau, M. H. & Lexow, B. (2013): Hypervelocity impacts on dry and wet sandstone: Observations of ejecta dynamics and crater growth.- Meteoritics & Planetary Science, MEMIN special issue. Meteoritics & Planetary Science, MEMIN special issue. doi: 10.1111/maps.12044.

[55] Kenkmann, T., Trullenque, G., Deutsch, A., Hecht, L., Salge, T., Schäfer, F., Thoma, K. (2013): Deformation and melting of steel projectiles in hypervelocity cratering experiments.- Meteoritics & Planetary Science, MEMIN special issue. doi: 10.1111/maps.12018

[54] Kenkmann, T., Deutsch, A., Thoma, K.,& Poelchau, M. (2013): The MEMIN research unit: Experimental impact cratering. Meteoritics & Planetary Science, MEMIN special issue. doi: 10.1111/maps.12035.

[53] Lexow, B., Wickert, M., Thoma, K., Schäfer, F., Poelchau, M.H. & Kenkmann, T. (2013): The extra-large light-gas gun of the Fraunhofer EMI: Applications for impact cratering research.- Meteoritics & Planetary Science, MEMIN special issue. doi: 10.1111/j.1945-5100.2012.01427.x.

[52] Moser, D., Poelchau, M.H., Stark, F. & Grosse, C. (2013): Application of nondestructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments.- Meteoritics & Planetary Science, MEMIN special issue. doi: 10.1111/maps.12000.

[51] Poelchau, M. H., Kenkmann, T., Thoma, K., Hoerth, T., Dufresne, A. & Schäfer, F. (2013): The MEMIN research unit: Scaling impact cratering experiments in porous sandstones.- Meteoritics & Planetary Science, MEMIN special issue. doi: 10.1111/maps.12016.

[50] Sommer, F., Reiser, F., Dufresne, A., Poelchau, M. H., Deutsch, A., Hoerth, T., Schäfer, F., Kenkmann, T. & Thoma, K. (2013): Ejection behavior characteristics in experimental cratering in sandstone targets.- Meteoritics & Planetary Science, MEMIN special issue. doi: 10.1111/maps.12017.

[49] Sturm, S., Wulf. G., Jung, D. & Kenkmann, T. (2013): The Ries impact, a double-layer rampart crater on Earth.- Geology 41, 531-534. doi: 10.1130/G33934.1.

[48] Vasconcelos, M. A. R., Crósta, A. P., Reimold, W. U., Góes, A. M. & Kenkmann, T. (2013): The Serra da Cangalha impact structure, Brazil: geological, stratigraphic and petrographic aspects of a recently confirmed impact structure.- Journal of South American Earth Sciences, 1-15. doi: 10.1016/j.jsames.2013.03.007.


[47] Crósta, A. P., Kazzuo-Vieira, C., Pitarello, L., Koeberl, C. &  Kenkmann, T. (2012): Geology and impact features of Vargeão Dome, southern Brazil. Meteoritics and Planetary Science 47, 51-71. doi: 10.1111/j.1945-5100.2011.01312.x.

[46] Kenkmann, T., Collins, G. S. & Wünnemann, K. (2012): The modification stage of crater formation. In: Osinski, G. R. & Pierazzo, E.(eds.): Impact Cratering. Processes and Products. Wiley & Sons, 60-75.

[45] Wulf, G., Poelchau, M. H. & Kenkmann, T. (2012): Structural Asymmetry in Martian Impact Craters as an Indicator for an Impact Trajectory.- Icarus 220, 194-204. doi: 10.1016/j.icarus.2012.04.025.


[44] Deutsch, A., Poelchau, M. H. & Kenkmann, T. (2011): Meteoriteneinschläge im Labor - das MEMIN Projekt.- GMIT – Geowissenschaftliche Mitteilungen 46, 6-15.

[43] Kenkmann, T., Kowitz, A., Wünnemann, K., Behner, T., Schäfer, F., Thoma, K. & Deutsch, A. (2011): Experimental Impact Cratering in Sandstone: the Effect of Pore Fluids. In: Schäfer, F. & Hiermaier, S. (eds.): Proceedings of the 11th Hypervelocity Impact Symposium, Freiburg, Germany, April 11–15, 2010. Schriftenreihe e.− Forschungsergebnisse aus der Kurzzeitdynamik 20, 64-74.

[42] Kenkmann, T., Wünnemann, K., Deutsch, A., Poelchau, M. H., Schäfer, F. & Thoma , K. (2011): Impact cratering in sandstone: the MEMIN pilot study on the effect of pore water. Meteoritics and Planetary Science 46, 890-902, doi: 10.1111/j.1945-5100.2011.01200.x.

[41] Kenkmann, T., Vasconcelos, M. A. R., Crósta, A. P. & Reimold, W. U. (2011): The complex impact structure Serra da Cangalha, Tocantins State, Brazil. Meteoritics and Planetary Science 46, 875-889, doi: 10.1111/j.1945-5100.2011.01199.x.

[40] Poelchau, M. H. & Kenkmann, T. (2011): Feather features: A low-shock-pressure indicator in quartz. J. Geophys. Res. 116, B02201. doi: 10.1029/2010JB007803.

[39] Wenk, H.-R., Janssen, C., Kenkmann, T. & Dresen, G. (2011): Mechanical twinning in quartz: Shock experiments, impact, pseudotachylites and fault breccias. Tectonophysics 510, 69-79. doi: 10.1016/j.tecto.2011.06.016.


[38] Kenkmann, T., Reimold, W. U., Khirfan, M., Salameh, E. & Konsul, K. (2010): The complex impact crater Jebel Waqf as Suwwan in Jordan: effects of target heterogeneity and impact obliquity on central uplift formation. Geological Society of America Special Paper 465, 471-488.

[37] Kenkmann, T., Kowitz, A., Wünnemann, K., Behner, T., Schäfer, F., Thoma, K., Deutsch, A. (2010): Experimental impact cratering in sandstone: the effect of pore fluids. Proceedings of the 11th Hypervelocity Impact Symposium 97, 18.

[36] Kenkmann, T., Deutsch, A., Domke, I., HECHT, L., Thoma, K, Schäfer, F., Patzschke, M., Salge, T. (2010): Hypervelocity cratering experiments with a steel projectile and a sandstone target: the fate of iron meteorites upon collision with planetary bodies. Proceedings of the 11th Hypervelocity Impact Symposium 112, 14.


[35] Kenkmann, T., Collins, G.S., Wittmann, A., Wünnemann, K., Reimold, W.U. & Melosh, H.J. (2009): A model for the formation of the Chesapeake Bay impact crater as revealed by drilling and numerical simulation. In: Gohn, G.S., Koeberl, C., Miller, K.G. & Reimold, W.U. (eds.): The ICDP-USGS Deep Drilling Project in the Chesapeake Bay Impact Structure: Results from the Eyreville Core Holes. Geological Society of America Special Paper 458, 571–585. doi: 10.1130/2009.2458(25).

[34] Kenkmann, T., Artemieva, N. A., Wünnemann, K., Poelchau, M. H., Elbeshausen, D., Nuñéz del Prado, H. (2009): The Carancas meteorite impact crater, Peru: geologic surveying and modeling of crater formation and atmospheric passage Meteoritics and Planetary Science 44(7), 985-1000.

[33] Kenkmann, T. (2009): Asteroid and Comet Impacts throughout Earth´s history. Zeitschrift für Geologische Wissenschaften 37(4-5), 293-318.

[32] Kenkmann, T. & Poelchau, M. H. (2009): Low-angle collision with Earth: the elliptical impact crater Matt Wilson, NT, Australia. Geology 37(5) 459–462. doi: 10.1130/G25378A.1.

[31] Poelchau, M. H., Kenkmann, T. & Kring, D. A. (2009): Rim uplift and crater shape in Meteor Crater: the effects of target heterogeneities and trajectory obliquity. Journal of Geophysical Research-Planets 114. doi: 10.1029/2008JE003235.

[30] Wittmann, A., Reimold, W.U., Schmitt, R.T., Hecht, L. & Kenkmann, T. (2009): The record of ground zero in the Chesapeake Bay impact crater—Suevites and related rocks. In: Gohn, G.S., Koeberl, C., Miller, K.G. & Reimold, W.U., (eds.): The ICDP-USGS Deep Drilling Project in the Chesapeake Bay Impact Structure. Results from the Eyreville Core Holes: Geological Society of America Special Paper 458, 349–376, doi: 10.1130/2009.2458(16).


[29] Collins, G. S., Kenkmann, T., Osinski, G. R. & Wünnemann, K. (2008): Mid-sized complex crater formation in mixed crystalline-sedimentary targets: insight from modeling and observation. Meteoritics and Planetary Science 43(12),  1955-1977.

[28] Poelchau, M. H. & Kenkmann, T. (2008): Asymmetric signatures in simple craters as an indicator for an oblique impact vector. Meteoritics and Planetary Science 43(12), 2059-2072.

[27] Gohn, G. S., Koeberl, C., Miller, K. G., Reimold, W. U., Browning, J. V., Cockell,C. S., Horton, J. W., Kenkmann, T., Kulpecz, A. A., Ppwars, D. S., Sanford, W. E. & Voytek, M. A. (2008): Deep Drilling into the Chesapeake Bay Impact Structure. Science 320, 1740 – 1745. doi: 10.1126/science.1158708.

[26] Buchner, E. & Kenkmann, T. (2008): Upheaval Dome: Impact origin confirmed. Geology 36, 227-230.


[25] Kenkmann, T., Kiebach, F., Rosenau, M., Raschke, U., Pigowske, A., Mittelhaus, K., Eue, D. (2007): Coupled effects of impact and orogeny: is the marine Lockne crater, Sweden, pristine? Meteoritics and Planetary Science 42, 1995-2012.

[24] Wittmann, A., Kenkmann, T., Hecht, L. & Stöffler, D. (2007): Reconstruction of the Chicxulub ejecta plume from its deposits in drill core Yaxcopoil-1. Geol. Soc. Am. Bulletin  119(9/10), 1151-1167.

[23] Walther, K., Frischbutter, A., Scheffzük, C., Kenkmann, T., Eichhorn, F. (2007): Diffraction measurement with synchrotron radiation on superimposed deformed composite of quartzite and dunite. Z. Geol. Wiss. 35, 17-26.


[22] Kenkmann, T. & Schoenian, F. (2006): Ries and Chicxulub: craters on Earth provide insights for Martian impacts. Meteoritics and PLanetary Science 41, 1587-1604.

[21] Kenkmann, T. & Ivanov, B.A. (2006): Target delamination by spallation and ejecta dragging: an example from the Ries crater´s periphery. Earth and Planetary Science Letters  252 (1/2), 15-29.

[20] Scherler, D., Kenkmann, T. & Jahn, A. (2006): Structural record of an oblique impact. Earth and Planetary Science Letters 248(1/2), 28-38.

[19] Schaefer, F., Thoma, K., Behner, T., NAU, S., Kenkmann, T., Wünnemann, K., Deutsch, A. & the MEMIN-team (2006): Impact Experiments on dry and wet sandstone. Proceedings of the 1st International Conference on Impact Cratering in the Solar System, ESTEC, Noordwijk, May 8-12, 2006, 6.

[18] Wittmann, A., Kenkmann, T., Schmitt, R.T. & Stöffler, D. (2006): Shock metamorphosed zircon of terrestrial impact craters. Meteoritics and Planetary Science 41(3), 433-454.


[17] Kenkmann, T., Hornemann, U. & Stöffler, D. (2005): Experimental shock synthesis of diamonds in a graphite gneiss. Meteoritics and Planetary Science, 40(9/10), 1299-1310.

[16] Kenkmann, T., Jahn, A., Scherler, D. & Ivanov, B.A. (2005): Structure and formation of a central uplift: a case study at the Upheaval Dome impact crater, Utah. In: Kenkmann, T., Hörz, F. & Deutsch, A. (eds.) "Large Meteorite Impacts III". Geological Society of America Special Paper 384, 85-115.

[15] Hertzsch, J. M., Ivanov, B.A. & Kenkmann, T. (2005): Numerical simulation of shock propagation in heterogeneous solids. In: Koeberl, C. & Henkel, H. (eds.): Impact tectonics. Springer Verlag, Heidelberg, 423-445.


[14] Kenkmann, T., Scherler, D. & Wittmann, A. (2004): Structure and impact indicators of the Cretaceous Sequence of the ICDP drill core Yaxcopoil-1, Chicxulub Crater, Mexico. Meteoritics and Planetary Science, Chicxulub Special Volume 39 (7), 1069-1088.

[13] Stöffler, D., Artemieva, N. A., Ivanov, B. A., Hecht, L., Kenkmann, T., Schmitt, R. T., Tagle, R.A. & Wittmann, A. (2004): Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling Yaxcopoil-1 and by numerical modeling. Meteoritics and Planetary Science, Chicxulub Special Volume 39(7), 1035-1067.

[12] Wittmann, A., Kenkmann, T., Schmitt, R.T., Hecht, L. & Stöffler, D. (2004), Impact related dike lithologies in the ICDP drillcore Yaxcopoil-1, Chicxulub crater, Mexico. Meteoritics and Planetary Science, Chicxulub Special Volume 39 (6), 931-954.


[11] Kenkmann, T. (2003): Dike formation, cataclastic flow, and rock fluidization during impact cratering: an example from the Upheaval Dome structure, Utah. Earth and Planetary Science Letters 214(1/2), 43-58.

[10] Heider, N. & Kenkmann, T. (2003): Numerical simulations of temperature effects at fissures due to shock loading. Meteoritics and Planetary Science 38(10), 1451-1460.


[9] Kenkmann, T. (2002): Folding within seconds. Geology  30(3), 231-234.

[8] Kenkmann, T. & Dresen, G. (2002): Dislocation microstructure and phase distribution in a lower crustal shear zone – an example from the Ivrea-Zone, Italy. International Journal of Geoscience 91, 445-458.

[7] Hertzsch, J.M., Ivanov, B.A. & Kenkmann, T. (2002): Simulations of shock wave propagation in heterogeneous solids. Proceedings of Asteroids, Comets, Meteors (ACM 2002). ESA Special Paper 500, 855-858.


[6] Machev, P. & Kenkmann, T. (2001): Orthogneisses from the Vlahina Mountain (SW Bulgaria): petrographical and microstructural studies. Review of the Bulgarian Geological Society 62(1-3), 65-76.


[5] Kenkmann, T., Hornemann, U. & Stöffler, D. (2000): Experimental generation of shock-induced pseudotachylites. Meteoritics and Planetary Science 35, 1275-1290.

[4] Kenkmann, T. & von Dalwigk, I. (2000): Radial transpression ridges: a new structural feature of complex impact craters. Meteoritics and Planetary Science 35, 1189-1202.

[3] Kenkmann, T., Ivanov, B. A. & Stöffler, D. (2000): Identification of ancient impact structures: Low-angle normal faults and related geological features of crater basements. In: Gilmour, I. & Koeberl, C. (eds.): Impacts and the Early Earth.- Lecture Notes in Earth Sciences 91, Springer-Verlag, Heidelberg, 271-309.

[2] Kenkmann, T. (2000): Processes controlling the shrinkage of porphyroclasts in gabbroic shear zones. Journal of Structural Geology 22, 471-487.


[1] Kenkmann, T. & Dresen, G. (1998): Stress gradients around porphyroclasts: palaeo-piezo-metric estimates and numerical modelling. Journal of Structural Geology 20(2/3), 163-173.